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Abstract— In image compression the key challenge s to efficiently encode and represent high frequency image structural components such as
patterns, edges and textures. In this work, we develop an efficient image compression scheme based on super-spatial prediction of structural
units. This so-called similar structure block prediction is motivated by motion prediction in video coding, attempting to find an optimal prediction of

structure components w ithin previously encoded image regions.

Index Terms— Bit Rate , Compressed Image, Context-based adaptive lossless image coding (CALIC), lossless image compression, RGB Color-

space, structure components, super spatial structure prediction.

1 INTRODUCTION

THE key in efficient image compression is to explore source

correlation so as to find a compact representation of im-
age data. Existing lossless image compression [1], [2] schemes
attempt to predict image data using their spatial neighbor-
hood [1]. A natural image often contains a large number of
structure components, such as edges, contours, and textures.
These structure components may repeat themselves at various
locations and scales. Therefore, there is a need to develop a
more efficient image prediction scheme to exploit this type of
image correlation.

The idea of improving image prediction and coding effi-
ciency by relaxing the neighborhood constraint can be traced
back to sequential data compression [4] and vector quantiza-
tion for image compression. In sequential data compression, a
substring of text is represented by a displacement/length ref-
erence to a substring previously seen in the text. Storer ex-
tended the sequential data compression to lossless image
compression. However, the algorithm is not competitive with
the state-of-the-art such as context-based adaptive lossless
image coding (CALIC)[1] in terms of coding efficiency. During
vector quantization (VQ) for lossless image compression, the
input image is processed as vectors of image pixels. The en-
coder takes in a vector and finds thebest match from its stored
codebook. The address of thebest match, the residual betw een
the original vector and its best match are then transmitted to
the decoder. The decoder uses the address to access an iden-
tical codebook, and obtains the reconstructed vector. Recently,
researchers have extended the VQ method to visual pattern
image coding (VPIC) and visual pattern vector quantization
(VPVQ). The encoding performance of VQ-based methods
largely depends on the codebook design. These methods still
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suffer from lower coding efficiency, when compared with the

state-of-the-art image coding schemes.

In the intra prediction scheme proposed by Nokia, there
are ten possible prediction methods: DC prediction, direction-
al extrapolations, and block matching. DC and directional
prediction methods are very similar with those of H264 intra
prediction [3]. The block matching tries to find the best match
of the current block by searching within a certain range of its
neighboring blocks. This neighborhood constraint will limit
the image compression efficiency since image structure com-
ponents may repeat themselves at various locations.

In fractal image compression [4], the self-similarity be-
tween different parts of an image is used for image compres-
sion based on contractive mapping fixed point theorem. How-
ever, the fractal image compression focuses on contractive
transform design, which makes it usually not suitable for loss-
less image compression. Moreover, it is extremely computa-
tionally expensive due to the search of optimum transforma-
tions. Even with high complexity, most fractal-based schemes
are not competitive with the current state of the art [1].

An efficient image compression scheme based on super-
spatial structure prediction of structure units is presented
here. Anatural image can be often separated into two types of
image regions: structure and non-structure regions. Nonstruc-
ture regions, such as smooth image areas, can be efficiently
represented with conventional spatial transforms, such as KLT
(Karhunen Loeve transform), DCT (discrete cosine transform)
and DWT (discrete wavelet transform). However, structure
regions, which consist of high frequency structural compo-
nents and curvilinear features in images, such as edges, con-
tours, and textureregions, cannot be efficiently represented by
these linear spatial transforms. They are often hard to com-
press and consume a majority of the total encodingbit rate.

Super-spatial structure prediction breaks the neighborhood
constraint, attempting to find an optimal prediction of struc-
ture components [5], [6] within the previously encoded image
regions. It borrows the idea of motion prediction from video
coding, which predicts a block in the current frame using its
previous encoded frames. In order to “enjoy the best of both
worlds”, a classification scheme is used to partition an image
into two types of regions: structure regions (SRs) and nonstruc-
ture regions (NSRs). Structure regions are encoded with super-
spatial prediction while NSRs can be efficiently encoded with
conventional image compression methods, such as CALIC. It
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is also important to point out that no codebook is required in
this compression scheme, since the best matches of structure
components are simply searched within encoded image re-
gions.

This paper is organized as follows:

Section 2 expalins the algorithm used to predict the image us-
ing direct prediction method wherein an optimal prediction of
structure components is done within the previously encoded
image regions. Also gives an explanation for different modes
that can be used for prediction of image blocks. Section 3 ex-
plains the residue encoding scheme used which helps in re-
trieving the lossless image at the decoder. Section 4 gives
detail about compressing the nonstructural areas using CAL-
IC. The block diagram of the complete algorithm is given in
next section and at the end simulation results in RGB
Colorspace is given, where the algorithm was tested.

2 SUPER-SPATIAL STRUCTURE PREDICTION

A real world scene often consists of various physical ob-
jects, such as buildings, trees, grassland, etc. Each physical
object is constructed from a large number of structure compo-
nents based upon some predetermined object characteristics.
These structure components may repeat themselves at various
locations and scales Fig. 1. Therefore, it is important to exploit
this ty pe of data similarity and redundancy for efficient image
coding.

The Super Spatial Structure Prediction borrows its idea
from motion prediction [3] Fig.2. In motion prediction Fig.
2(b), we search an area in the reference frame to find the best
match of the current block, based on some distortion metric.
The chosen reference block becomes the predictor of the cur-
rent block. The prediction residual and the motion vector are
then encoded and sent to the decoder. In similar structure
block prediction Fig.2(a), we search within the previously en-
coded image region to find the prediction of an image block.
The reference block that results in the minimum block differ-
ence is selected as the optimal prediction. For simplicity, we
use the sum of absolute difference (SAD) to measure the block

difference.
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(a) Barbara image. (b) Four image blocks extracted from Barbara
Fig. 1 Example for SuperSpatial Structure Block Redundancies
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Fig 2. (a) SuperSpatial structure prediction (b) Motion prediction in video
coding.

As in video coding [3], we need to encode the position infor-
mation of the best matching reference block. To this end, we
simply encode the horizontal and vertical offsets, between the
coordinates of the current block and the reference block using
context-adaptive arithmetic encoder. The size of the prediction
unit is an important parameter in the similar structure block
prediction. When the unit size is small, the amount of predic-
tion and coding overhead will become very large. However, if
we use a larger prediction unit, the overall prediction efficien-
cy will decrease. In this work, we attempt to find a good tra-
deoff between these two and propose to perform spatial image
prediction on block basis.

2.1 Image Block Classification

A block-based image classification scheme is used here.
The image is partitioned into blocks of 8x8. We then classify
these blocks into two categories: structure and nonstructure
blocks. Structureblocks are encoded with super-spatial predic-
tion. Nonstructureblocks are encoded with conventional loss-
less image compression methods, such as CALIC.

2.2 Estimation of Threshold

The threshold is required while comparing the current
block with the previous encoded region. This threshold value
should be so decided that it will give best compression per-
formance.

2.3 Prediction Modes

In this scheme using 4 x 4 blocks, nine modes of prediction
are supported. A 4 x 4block of pixels labeled “a” through “p”
are predicted from a row of eight pixels labeled “A” through
“H” abovethe current blockand a col
umn of four pixels labeled “I” through “L” to the left of the
current block as well as a corner pixel labeled “M,” as shown
in Fig 3. The nine modes of 4 x 4 blocks are mode 0 (vertical
prediction), mode 1 (horizontal prediction), mode 2 (DC pre-
diction), mode 3 (diagonal down/left prediction), mode 4 (di-
agonal down/right prediction), mode 5 (vertical-right predic-
tion), mode 6 (horizontal-down prediction), mode 7 (vertical-
left prediction), and mode 8 (horizontal-up prediction). Out of
the nine modes the mode that results in minimum SAD is the
chosen block.
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Fig.3 Nine modes of Prediction used

2. 4 CALIC

The Context Adaptive Lossless Image Codec (CALIC)
scheme, uses both context and prediction of the pixel values.
CALIC employs a two-step (prediction/residual) approach. In
the prediction step, CALIC [1] employs a simple new gradient
based non-linear prediction scheme called GAP (gradient-
adjusted predictor) which adjusts prediction coefficients based
on estimates of local gradients. Predictions then made context-
sensitive and adaptive by modeling of prediction errors and
feedback of the expected error conditioned on properly chosen
modeling contexts. The modeling context is a combination of
quantized local gradient and texture pattern, two features that
are indicative of the error behavior. The net effect is a non-
linear, context-based, adaptive prediction scheme that can cor-
rect itself by learning from its own past mistakes under differ-
ent contexts.

CALIC encodes and decodes images in raster scan order
with a single pass through the image. The coding process uses
prediction templates that involve only the previous two scan
lines of coded pixels. Consequently, the encoding and decod-
ing algorithms require a simple double buffer that holds two
rows of pixels that immediately precede the current pixel,
hence facilitating sequential build-up of the image.

In the continuous-tone mode of CALIC, the system has four
major integrated
components: -

e Prediction

e Context selection and quantization

e Context modeling of prediction errors

e Entropy coding of prediction errors.

CALIC is a spatial prediction based scheme, in which GAP is
used for adaptive image prediction [1].

Here GAP prediction is performed on the original image and
the prediction error for each block is computed. If the predic-
tion error is larger than a given threshold, then it is considered

as a structure block. Otherwise, it is classified as a nonstruc-
tureblock.

3 RESIDUE ENCODING

The implemented image compression scheme is purely
lossless, the residues need to be transmitted along with the
image. But this will increase the payload size and thus the
compression will not be achieved successfully. The residues
are encountered in two places: - The CALIC Algorithm and
the SAD residues. Arithmetic coding [7], [8] schemes are to be
used to transmit the residues to further reduce the size of the
overhead data per block.

Arithmetic coding is especially useful when dealing with

sources with small alphabets, such as binary sources, and al-
phabets with highly skewed probabilities. It is also a very use-
ful approach when, for various reasons, the modeling and
coding aspects of lossless compression are to be kept separate.
In arithmetic coding a unique identifier or tagis generated for
the sequence to be encoded. This tag corresponds to a binary
fraction, which becomes the binary code for the sequence.
In order to distinguish a sequence of symbols from another
sequence of it has to be tagged with a unique identifier. One
possible set of tags for representing sequences of symbols are
the numbers in the unit interval (0, 1). Because the number of
numbers in the unit interval is infinite, it should be possible to
assign a unique tag to each distinct sequence of symbols. In
order to do this we need a function that willmap sequences of
symbols into the unit interval. A function that maps random
variables, and sequences of random variables, into the unit
interval is the cumulative distribution function (cdf) of the
random variable associated with the source. This is the func-
tion to beused in developing the arithmetic code.

4 THE COMPLETE ALGORITHM

The complete algorithm used for this lossless image com-
pression scheme can be categorized into two main parts as
listed below.

4.1 Proposed Encoder
The original image is subjected to Similar Structure Block
Prediction Algorithm. This produces a Lossy Compressed
Image and a set of residues. The residues are then encoded
using Arithmetic Coding. The Lossy Compressed Image
along with the encoded residues forms the compressed data
as shownin Fig. 4.
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Fig.4 Proposed Encoder

4.2 Proposed Decoder
The compressed data consisting of Lossy Compressed Im-
age and encoded residues is then given as inputs to the de-
coder. The encoded residues are given to the Arithmetic De-
coder to obtain the original set of residues which is then add-
ed to the Lossy Compressed Image to reconstruct the Final
Imageas shown in Fig.5.

COMPRESSED
DATA

LOSSY COM-
PRESSED IMAGE

ENCODED
RESIDUES

ARITHMETIC
DECODER

DECODED
RESIDUES

LOSSLESS RECON-
STRUCTED IMAGE

Fig.5 Proposed Decoder

5 SIMULATION RESULTS

All the simulations were done using MATLAB 7.11 (R2010b)
on RGB Colorspaces on standard Images (Fig 6) size of
512x512 pixels like Lena, Aircraft, Baboon, Lake and Peppers.

: A B
Fig 6 Standard RGB Colorsapce Test Images used

The RGB Colorspace images are first divided into each R, G
and B component and individually the algorithm is applied
into each component. The bit rate for the compressed color
image is calculated and as shown in graph 1.

In graph 1, Bit rate of proposed algorithm is compared with
CALIC for each test images. From graph we can observe that
bit rate saving is more for baboon which has more structural
regions.

The graph 2 shows the variation of bit rate for different per-
centage of structural regions for all test images. The result
shown in graph 1 is the best case result when comparing with
CALIC which has been obtained while changing the percen-
tage of structureregions as shown in graph 2.
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Graph1 Compression Performance comparison of SSSP with CALIC

Graph?2 Variation of Bit Rate with the percentage of Structure
Regions

6 CONCLUSION

In this endeavor a simple yet efficient lossless image compres-
sion algorithm based on structure prediction has been success-
fully designed and tested for RGB Colorspace. It is motivated
by motion prediction in video coding, attempting to find an
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optimal prediction of a structure components within previous-
ly encoded image regions. Taking CALIC as thebase code, the
image was classified into various regions and they were en-
coded accordingly. The extensive experimental results demon-
strate that the proposed hybrid scheme is very efficient in loss-
less image compression, especially for images with significant
structure components.
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